
 
Abstract--The ability to track illicit radioactive transport

through an urban environment has obvious national security
applications. This goal may be achieved by means of individual
portal monitors, or by a network of distributed sensors. We
have examined the distributed sensing problem by modeling a
network of scintillation detectors measuring a Cesium-137
source. We examine signal-to-noise behaviors that arise in the
simple combination of data from networked radiation sensors.
We find that, in the ideal case, large increases in signal-to-noise
compared to an individual detector can be achieved, even for a
moving source. We also discuss statistical techniques for
localizing and tracking single and multiple radioactive sources.

I. INTRODUCTION

HE distributed sensor network project at Los Alamos
National Laboratory is investigating the use of

networked detection for various applications, including
tracking of radioactive materials. Currently proposed solutions
to the detection of radioactive materials in an urban setting
typically involve the use of individual, large, portal-monitor-
style detectors positioned at choke points. This may not
ultimately be acceptable in an urban environment, given the
large number of transport avenues to be covered and the
potential objections to large detection packages; a more
discreet solution may be required. We therefore are
investigating the use of large numbers of small detectors. We
are not attempting here to answer the question of whether
detection limits, for example, are better or worse in such a
situation, compared to a portal monitor scenario. We are only
examining the characteristics, specifically signal-to-noise
(SNR), to be expected in a distributed network. We assume
that the detectors in our system are stand-alone and wirelessly
networked to allow immediate data sharing with freedom from
the need for an infrastructure (external power, cables, internet
connections, etc.). We furthermore assume that such a sensor
network would be devised as an independent and fully
distributed entity, not requiring a centralized processing
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station. This is achievable by using a microcontroller built
into the individual sensing nodes; or by incorporating
dedicated processing nodes into the network, in cases where
more processing power is required than can be conveniently
fitted into the sensors themselves. The Distributed Sensor
Network, or DSN, then, consists of a large number of small,
simple detector/processor nodes with the capability of sharing
either raw or partially-processed data. The data are
autonomously analyzed by the network. This is done either by
individual nodes collecting data (through some combination of
automatic publishing and requesting), or through the use of a
software agent traveling through the network, collecting
relevant data and calculating partial results as it goes.

In addition to the radiation detectors themselves, the sensor
nodes on the network would probably be equipped with GPS
receivers for time synchronization and position information. A
complete detection package could be built with low enough
power requirements to allow long-term operation on battery
power. The addition of a solar recharge system would permit a
system capable of long-term autonomous monitoring to be
fielded on short notice, for example at special events or in
response to particular threats. Such a system would require ad-
hoc networking capabilities, as are being researched at a
number of institutions. Finally, any deployed system would
need mechanisms for tagging suspect vehicles (e.g., a triggered
video system), and alerting authorities to a potential threat.

II. SIGNAL-TO-NOISE FOR A SINGLE DETECTOR

Our chosen scenario: a radioactive source is traveling at
constant speed parallel to a line of evenly-spaced identical
detectors. This is a simple geometry, but does represent an
urban or roadside situation. We take the source to be a small
quantity of Cesium-137; this isotope was chosen because its
availability in industrial sources and typical powdered form (as
CsCl) make it a potential element of a radiological dispersal
device (“dirty bomb”). The source is described by its speed,
distance of closest approach to any particular detector, and
activity. Any actual device being transported would have both
intentional and intrinsic shielding; for convenience, we define
the activity of the source to be its equivalent (in terms of
number of gammas/s escaping the vehicle) in an unshielded
condition. We choose as our detectors the ubiquitous 75mm
NaI scintillator. The source-to-detector response function in the
model includes the inverse square fall-off, atmospheric
attenuation, and factors for the capture and conversion in the
NaI of gammas into pulses within the Cs-137 photopeak (662
keV). Edge effects, angular response, and any sources of
electronic noise are ignored, as we are most concerned with
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discovering the overall features of the SNR, rather than with
calculating the exact SNR for a specific sensor. We assume an
array of 25 detectors in a straight, level line, with constant
10m separation between individual detectors.

To calculate the SNR for a single detector, we start by
calculating an “interaction length,” the product of the source
speed and the detector’s integration time. We consider this
interaction length to be centered on the middle detector in the
array. The source is then propagated from one end of the
interaction length to the other at the chosen speed, and count
rates are calculated and integrated in 10ms bins for the duration
of the integration time, at which time the source has reached
the far end of the interaction length. We also include a constant
background level of 7 counts/s under the photopeak, derived
from published natural background spectra [1]. SNR is then

calculated as( )BSS +/ , where S represents the integrated
count rate from the source, and B the integrated counts due to
background. If background levels are changing in a non-
statistical fashion, it may be appropriate to calculate SNR as

simply ( )( )BSS +/  [2,3]. We have retained the standard
definition; the difference is minor for the situations we are
considering.

Ordinarily, SNR would increase with the square root of the
detector integration time. But this is not the case when
considering a moving source. As the integration time
increases, the source spends more and more time increasingly
far from the detector, reducing the average count rate; the
situation worsens as the speed of the source increases. Fig. 1,
the results of one set of our calculations, bears this out. In Fig.
1, shading indicates calculated SNR: white represents high
SNR. As the speed of the source (horizontal axis) increases,
the SNR always drops. As the integration time is increased
(vertical axis), the SNR increases at first, then drops. This
effect is most easily seen at moderately high source speeds.
The net effect is that, for any given source speed, there is an
integration time that maximizes the SNR. This is clearly seen
by examining the solid contour lines; the peak SNR for a
given speed is at the “nose” of a contour. This result can also
be derived by means of an analytical approximation; [4] used
the expression VLT /8.2=  (T=integration time, L=distance
of closest approach, V=source speed). Likewise, the locus of
points of maximum SNR in Fig. 1, shown by the dotted line,
follows an VL /  hyperbola, with a coefficient of 1 2 . A
change in any of the parameters of our model (closest
approach, source activity, detector type, background, gamma
energy, and so on) would alter the specifics of the SNR curves
from that demonstrated by Fig. 1, but the general behavior
(maximum SNR at an integration time given by a hyperbolic
curve) would remain the same.

III. SIGNAL-TO-NOISE FOR NETWORKED DETECTORS

Next we examine the increase in SNR made possible by
adding together detector outputs. We make the assumption that
all 25 detectors in the network are operating identically, with
synchronized integration times, and with identical background
levels. One detector (the 13th or central unit) is treated as in the
previous section, i.e., it is the detector on which the

interaction length happens to be centered. The calculation of
SNR for the surrounding detectors is performed as before, with
the exception that the center of the interaction length is
displaced some distance to one side or the other. We assume
that the integrated counts from each detector are all made
available at some point in the network. We then add the SNR
values in quadrature for varying numbers of detectors: 1
(central detector), 3 (center plus one on each side), 5 (center
plus two on each side), and so on, to a total of 25 detectors.

Typical results are shown in Fig. 2, expressed as a ratio of
SNR for the combined detectors to SNR for a single detector.
The top half of Fig. 2 is for a source speed of 20 m/s, while
the bottom half is for a source speed of 10 m/s. Each curve on
the plots represents a different integration time. For each
integration time, the SNR ratio increases as the number of
detectors increases. After some number of detectors is added,
however, the SNR ratio curve flattens out. This occurs because
the additional detectors are increasingly far from the interaction
length of the source, and therefore the integrated background is
relatively larger. As the interaction length is increased
(compare curves at increasing integration times in either panel,
or the same integration time in both panels), the greater the
number of detectors that can be added before the roll-off
occurs. At the longest interaction lengths shown in Fig. 2
(integration times of 50 s and 100 s), the SNR ratio curve
collapses into a straight line (on our log-log plot) for all

detector combinations. This line is simply the N (where N
is the number of detectors) increase one would expect from the
statistics of adding collocated detectors. The motion of the
source combined with the integration time has made the
detectors virtually collocated. The curves in Fig. 2 are
symmetric with respect to integration time and speed; that is,
the SNR ratio curve for a 1-s integration time and a source
moving at 10m/s is identical to the curve for a 10-s integration
time and a 1 m/s source speed. Only their product, the
interaction length, matters. In Fig. 2, the curves for higher
speeds are above those for lower speeds, at any given
integration time. This does not contradict the results of the
previous section that source speed reduces SNR, since Fig. 2
presents a ratio of SNRs. If absolute SNR values were plotted,
the SNR for some number of combined detectors and a high
speed source would be lower than that for the same number of
detectors and a low-speed source.  Some situations might have
a cross-over where a curve that has leveled off intercepts one
that is still increasing.

With a system of networked detectors capable of
autonomous storage and trading of data, it is straightforward to
do something more complicated than what was described in
the previous paragraph: the coherent addition of data. By
“coherent addition,” we mean the combination of data values
while taking into account the motion of the source: the counts
from each detector are added together with increasing time
lags, so that (hopefully) the integration window follows the
source as it moves from detector to detector. We simulated this
in our model by propagating the source past the detector array
in a series of contiguous interaction lengths (again, we are
assuming that the detectors are integrating in synchronization).
We first selected the integration interval that provided the
maximum SNR for the central (13th) detector in our array of



25. We then added detectors with zero lags (same situation as
Fig. 2), 1 lag (nearest neighbors to the center are combined
using the integration time 1 step ahead or behind the center,
2nd nearest neighbors 2 steps ahead or behind, etc.), 2 lags
(nearest neighbors 2 steps removed, 2nd nearest neighbors 4
steps removed, etc.), and so on. Detectors are combined in
groups totalling 1, 3, 5,…,25 as before. Again, the data values
were added in quadrature and SNR calculated; the results are
presented in Fig. 3. When the interaction length matches the
detector spacing and number of lags (Fig. 3, upper panel, 1

lag), the SNR increases along the N curve without limit.
There is no roll-off as the number of detectors is increased, as
coherent addition process keeps the source centered on the
integration time window of each detector. Under less favorable
conditions, (lower panel, 1 lag) the SNR increases with the
combination of a few detectors, then rolls off. For very poor
matches (lower panel, lags=3,4,5), the SNR for combined
detectors is always worse than that of a single detector.

Finally, in Fig. 4, we see the effect of a varying speed on
the coherent integration process. We start with a situation in
which the lag factor is chosen to produce an exact match with
the source speed, giving a linearly increasing SNR ratio on the
log-log plot. As a small, constant acceleration is introduced
(0.02m/s2 and 0.1m/s2 are shown), the SNR ratio begins to

break away from the N curve, with the effect increasing as
more detectors are combined. In this demonstration, the initial
speed of the source was chosen so that the accelerating source
was moving at 10 m/s as it passed the 25th detector in the
array, after an elapsed time of 100s. The loss in SNR is
approximately 50% for 25 detectors and an acceleration of
0.1m/s2.

IV. BAYESIAN METHODS FOR RADIOACTIVE-SOURCE
LOCALIZATION

The key to Bayesian methods is a formula for the
probability of the data- the counts recorded at the sensors, cs;
s=1,2,…S,- given the level of background radiation, b, and the
source’s parameters: were it stationary, these would be its
coordinates, say, ( )yx, , and its amplitude (or strength) a.
Here we assume that Poisson statistics obtain, and, therefore
(from its convolution properties) the desired formula is

∏
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with rs denoting the Euclidean distance between the source and
sensor node s; s=1,2,…,S.

Although (1), along with a suitable prior distribution,
specifies a posterior distribution of ( )ayx ,, , given the data,
the characterization of this distribution through its moments,
for instance 〉〈〉〈 yx ,  and 〉〈a , could be salutary. That is, the
sensor network could automatically compute these expected

values and, under appropriate circumstances, forward these—to
narrow the search for a putative radioactive source. Adaptive
Gaussian quadrature may be used to evaluate the respective
integrals. Analogous techniques apply to a moving source and
to multiple sources. (For which one should invoke “partitions”
of the counts into those belonging to each source and
accommodate nearly-everywhere vanishing integrands. The
Markov chain Monte Carlo (MCMC) method may be used to
effect the “importance sampling” of good partitions [5].) At the
expense of an increase in the complexity of the probability
distributions to be calculated, the Bayesian framework can also
be used for source tracking and with spectral data [6,7].

V. CONCLUSION

The signal-to-noise that can be expected from a single
detector measuring a moving source is considerably different
from what is expected for a stationary source: there is an
optimal integration time which is proportional to the ratio of
closest-approach-distance to source-speed. When combining
readings of a moving source from an array of detectors, we find

that SNR increases along a N  curve for small numbers of
detectors, but levels off for larger numbers of detectors, with
the position of the roll-off depending on the “interaction
length,” given by the product of source speed and integration
time. This limitation can be overcome by incorporating
appropriate time lags into the addition, such that the
integration windows used in the addition follows the source as
it moves from detector to detector. Sophisticated analyses such
as Bayesian tracking and the MCMC method may be
employed for source estimation, location, and tracking as well
as the separation of multiple sources.

A small detector will always have lower efficiency than a
large detector, although in the presence of background the two
may be equivalent in detection abilities [3]. For a detector
array, the coherent addition process can make up for the low
efficiency of small detectors. The difficulty, of course, is that
the sensor network must have some knowledge of the traffic
speed to determine the appropriate time lag for addition. The
sensor network design could easily incorporate an average
speed measurement, or even a vehicle-specific speed in areas of
low traffic density. Alternatively, if the traffic speed is
relatively constant, the sensor network’s data fusion algorithm
could simply step through different lag values; as Fig. 3
demonstrates, there will be a relatively limited set of
reasonable values, and a rapid improvement in SNR at the
correct one. In any event, the increasing SNR shown in Fig. 3
would not be sustained indefinitely in a real-world situation.

The coherent addition process is a simple, and well within
the processing and data storage capabilities of simple
distributed sensor systems. A system incorporating Bayesian
or MCMC methods may require the addition of dedicated
processing nodes to provide the compute power needed for a
timely decision. The results shown here demonstrate that the
system design for a radioactivity-detecting DSN will have clear
choices for at least two important parameters: the integration
time for a single detector and the maximum number of detector
outputs that need to be combined at any one location. In an
operational system, both of these quantities may have to be



adaptive, as they depend on the speed of the source being
detected.
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Fig. 1.  SNR for a single detector; distance of closest approach = 20m,
effective source activity = 0.01C. Shading represents SNR, according to
color scale at right. Contour lines are at SNR values of 25, 20, 15, 12.5, 10,
and 7.5. Dotted line defines locus of optimal integration times.
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Fig. 2.  SNR for multiple sensors ratioed to SNR for single sensor. Upper
panel is for a source moving at 10 m/s; lower panel is for 20 m/s. Effective
source activity is 0.01 C and distance of closest approach = 20 m. Legend
gives integration time for each curve.
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Fig. 3.  SNR for detector outputs combined by coherent addition. Upper
panel is for 1 s integration time, lower panel is for 2 s integration time. For
both panels, source speed = 10 m/s, effective source activity = 0.001 C,
distance of closest approach = 5 m. Legend gives Lag value for each curve.
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Fig. 4.  SNR for detectors combined with coherent addition, including an
acceleration term, ratioed to SNR for a single detector. Integration time = 1 s,
effective source activity = 0.001 C, distance of closest approach = 5 m. The
initial source speed was chosen such that the source was traveling at 10 m/s
as it passed the 25th detector in the array, after an elapsed time of 100 s.
Legend gives acceleration value for each curve.


